On the polynomial zeros of the Clebsch-Gordan and Racah coefficients

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L243
(http://iopscience.iop.org/0305-4470/17/5/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:00

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the polynomial zeros of the Clebsch-Gordan and Racah coefficients

K Srinivasa Rao and V Rajeswari
MATSCIENCE, The Institute of Mathematical Sciences, Madras-600 113, India

Received 16 January 1984

Abstract

It is shown that the sybmolic binomial expansions for the Clebsch-Gordan and Racah coefficients are exact for $n=1$ (where $n+1$ indicates the number of terms in the series expansions). When exact, these binomial forms reveal polynomial zeros of degree one, which are trivial structure zeros, hitherto considered as 'non-trivial' zeros, along with polynomial zeros of degree $\geqslant 2$.

The only systematic studies (Koozekanani and Biedenharn 1974, Varshalovich et al 1975, Bowick 1976, Biedenharn and Louck 1981) of the polynomial or non-trivial zeros of the Clebsch-Gordan and Racah coefficients are numerical in approach. Koozekanani and Biedenharn (1974) tabulated the non-trivial zeros of the Racah coefficient for arguments $\leqslant \frac{37}{2}$, while Varshalovich et al (1975) listed the same for the $3 n-j$ symbols for $\left(j_{1}+j_{2}+j_{3}=\right) J \leqslant 27$. Bowick (1976) reduced these listings by taking into account the Regge symmetries (Regge 1958, 1959) for these coefficients.

In Srinavasa Rao (1978) a set of six series representations for the Clebsch-Gordan ($3-j$) coefficient was defined, in the following compact notation:

$$
\begin{align*}
&\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=\left\|\begin{array}{ccc}
-j_{1}+j_{2}+j_{3} & j_{1}-j_{2}+j_{3} & j_{1}+j_{2}-j_{3} \\
j_{1}-m_{1} & j_{2}-m_{2} & j_{3}-m_{3} \\
j_{1}+m_{1} & j_{2}+m_{2} & j_{3}+m_{3}
\end{array}\right\| \\
&=\left\|R_{i k}\right\| \\
&= \delta\left(m_{1}+m_{2}+m_{3}\right) \prod_{i, k=1}^{3}\left[R_{i k}!/(J+1)\right]^{1 / 2}(-1)^{\sigma(p q r)} \\
& \times \sum_{s}(-1)^{s}\left[s!\left(R_{2 p}-s\right)!\left(R_{3 q}-s\right)!\right. \\
&\left.\times\left(R_{1 r}-s\right)!\left(s+R_{3 r}-R_{2 p}\right)!\left(s+R_{2 r}-R_{3 q}\right)!\right]^{-1}, \tag{1}
\end{align*}
$$

for all six permutations of $(p q r)=(123)$ with

$$
\sigma(p q r)= \begin{cases}R_{3 p}=R_{2 q} & \text { for even permutations. } \\ J+R_{3 p}-R_{2 q} & \text { for odd permutations }\end{cases}
$$

Following the procedure given by Sato (1955), and using the symbolic notation:

$$
p^{(x)}=p!/(p-x)!
$$

we obtain

$$
\begin{align*}
\left\|R_{i k}\right\|=\delta\left(m_{1}\right. & \left.+m_{2}+m_{3}\right) \prod_{i, k=1}^{3}\left[R_{i k}!/(J+1)\right]^{1 / 2}(-1)^{\sigma(p q r)} \\
& \times\left[\Gamma\left(n+1, C_{u}+1, C_{v}+1, B_{r p}+n+1, B_{r q}+n+1\right)\right]^{-1} \\
& \times\left\{\left(B_{r p}+n\right)\left(B_{r q}+n\right)-C_{u} C_{v}\right\}^{(n)} \tag{2}
\end{align*}
$$

where $\Gamma(a, b, \ldots)=\Gamma(a) \Gamma(b) \ldots, n=\min \left(R_{2 p}, R_{3 q}, R_{1 r}\right) . C_{u}, C_{v}$ represent the two $R_{i k}$'s in the triple ($R_{2 p}, R_{3 q}, R_{1 r}$) other than their minimum, $B_{r p}=R_{3 r}-R_{2 p}$ and $B_{r q}=R_{2 r}-R_{3 q}$. The expression (2) given here is general when compared with the result obtained by Sato and Kaguei (1972), as their particular result can be derived by putting $(p q r)=(231)$ in (2), while (2) itself holds for all the six permutations of (pqr).

Equation (2) is symbolic for $n \geqslant 2$, since it uses the generalised power (Smorodinskii and Shelepin 1972) (the analogue of ordinary power) $p^{(x)}=p!/(p-x)!$, but it is exact for $n=1$, since $p^{(1)}=p$. Therefore, the binomial form for the Clebsch-Gordan coefficient explicitly reveals further structural or trivial zeros of this coefficient. We find that of the 39 reduced 'non-trivial' zeros listed by Bowick (1976) and Biedenharn and Louck (1981) for $0 \leqslant J\left(=j_{i}+j_{2}+j_{3}\right) \leqslant 27,21$ are trivial structure zeros. In fact, the conventional expansion for the Clebsch-Gordan coefficient, given by equation (1), can be multiplied by a simple factor ($1-\delta_{x, y}$) where

$$
\begin{equation*}
X=R_{m r} R_{k p} \quad \text { and } \quad Y=R_{m p} R_{k r} \tag{3}
\end{equation*}
$$

provided the number of terms is governed by the power of the binomial, $n=\min \left(R_{2 p}\right.$, $\left.R_{3 q}, R_{1 r}\right)$, and it being (say) $R_{l q}$, for cyclic permutations of $(p q r)=(123)=(l m k)$.

This same condition can also be derived from the set of ${ }_{3} \mathrm{~F}_{2}(A B C ; D E ; 1)$ s (Srinivasa Rao 1978) for the $3 j$ coefficient, when the expansion ends after the second term in the series, (i.e. $1+A B C / D E=0$, or $A B C=-D E$) so that these zeros from the polynomial part of the $3-j$ coefficient can be called structure zeros of degree one. This multiplicative factor ($1-\delta_{X, Y}$) will thus represent all those trivial structure zeros of degree one, considered hitherto as 'non-trivial' zeros.

The Racah coefficient (Racah 1942) is defined as:

$$
\begin{align*}
W(a b c d ; e f) & =(-1)^{a+b+c+d}\left\{\begin{array}{lll}
a & b & e \\
d & c & f
\end{array}\right\} \\
& =N(-1)^{\beta_{1}} \sum_{p}(-1)^{P}(P+1)!\left[\prod_{i=1}^{4}\left(P-\alpha_{i}\right)!\prod_{j=1}^{3}\left(\beta_{j}-P\right)!\right]^{-1} \tag{4}
\end{align*}
$$

where the range of P is restricted to non-negative integral values of the factorials:

$$
\max \left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \leqslant P \leqslant \min \left(\beta_{1}, \beta_{2}, \beta_{3}\right),
$$

with

$$
\begin{array}{ll}
\alpha_{1}=a+b+e, & \beta_{1}=a+b+c+d, \\
\alpha_{2}=c+d+e, & \beta_{2}=a+d+e+f, \\
\alpha_{3}=a+c+f, & \beta_{3}=b+c+e+f, \\
\alpha_{4}=b+d+f, & \\
N=\Delta(a b e) \cdot \Delta(c d e) \cdot \Delta(a c f) \cdot \Delta(b d f),
\end{array}
$$

and

$$
\Delta(x y z)=[(x+y-z)!(x-y+z)!(-x+y+z)!/(x+y+z+1)!]^{1 / 2}
$$

which vanishes unless the usual triangular conditions in x, y and z, namely $|x-y| \leqslant z \leqslant$ $x+y$, is satisfied. Thus, the factor N contains all the trivial structure zeros of the Racah coefficient.

Sato (1955) has rearranged (4), by putting $\alpha_{0}=\alpha_{\max }, \beta_{0}=\beta_{\min }, n=\beta_{0}-\alpha_{0}, P-\alpha_{0}=$ $z, 0 \leqslant z \leqslant n, A_{i}=\alpha_{0}-\alpha_{i}, B_{j}=\beta_{j}-\alpha_{0}$, with the indices $i=p, q, r$ and $j=u, v$ representing those of α 's and β 's other than α_{0} and β_{0} and formally regarding $p^{(x)}$ as if they were powers of p, but actually corresponding to the notations:

$$
P^{(x)}=P!/(p-x)!\quad \text { and } \quad P^{(-x)}=(p+x)!/ P!
$$

into the following symbolic binomial form:

$$
\begin{align*}
W(a b c d ; e f)= & N(-1)^{\alpha_{0}+\beta_{1}} \Gamma\left(\alpha_{0}+2\right) \\
& \times\left[\Gamma\left(n+1, A_{p}+n+1, A_{q}+n+1, A_{r}+n+1, B_{u}+1, B_{v}+1\right)\right]^{-1} \\
& \times\left\{\left(A_{p}+n\right)\left(A_{q}+n\right)\left(A_{r}+n\right)-B_{u} B_{v}\left(a_{0}+1\right)^{(-1)}\right\}^{(n)} . \tag{5}
\end{align*}
$$

Realising that if we make the following substitutions instead,

$$
\begin{array}{llll}
z=\beta_{0}-P ; & A_{t}=\beta_{0}-\alpha_{i} & (i=k, l, m) ; & \\
B_{J}=\beta_{1}-\beta_{0} & (j=s, t) ; & 0 \leqslant z \leqslant n ; & n=\beta_{0}-\alpha_{0},
\end{array}
$$

where the indices $i=k, l, m$ and $j=s, t$ are used for those values of the α 's and β 's other than α_{0} and β_{0}, we showed (Srinivasa Rao and Venkatesh 1977) that an equivalent symbolic binomial expansion can be derived:

$$
\begin{align*}
W(a b c d ; e f)= & N(-1)^{\beta_{i}-\beta_{0}} \Gamma\left(\beta_{0}+2\right) \\
& \times\left[\Gamma\left(n+1, A_{k}+1, A_{l}+1, A_{m}+1, B_{s}+n+1, B_{t}+n+1\right)\right]^{-1} \\
& \times\left\{\left(B_{s}+n\right)\left(B_{t}+n\right)-A_{k} A_{l} A_{m}\left(\beta_{0}+1\right)^{(-1)}\right\}^{(n)} \tag{6}
\end{align*}
$$

where we have used the notation:

$$
p^{(x)}=p!/(p-x)!\quad \text { and } \quad p^{(-x)}=1 / p^{(x)}
$$

and regarded the form $p^{(x)}$ to represent the generalised powers of p.
Since the derivation of (6) uses the generalised power and the notation $p^{(-x)}=1 / p^{(x)}$, while Sato's derivation of (5) uses the generalised power and the notation $p^{(-x)}=$ $(p+x)!/ p!$ it follows that (6) is an exact binomial expansion at least for the power $n=1$. It is straightforward to show, as in the case of the $3-j$ coefficients, that these structure zeros which arise from the polynomial part of the $6-j$ coefficient are indeed polynomial zeros of degree one. Therefore, we suggest that the conventional definition given by (4) may be modified to include a multiplicative factor ($1-\delta_{x, y}$) where

$$
x=\left(\beta_{s}-\alpha_{0}\right)\left(\beta_{t}-\alpha_{0}\right)\left(\beta_{0}+1\right)
$$

and

$$
y=\left(\beta_{0}-\alpha_{k}\right)\left(\beta_{0}-\alpha_{l}\right)\left(\beta_{0}-\alpha_{m}\right) .
$$

Since, for $n=1, \beta_{0}+1=\alpha_{0}+2$ and $\left(\alpha_{0}+1\right)^{(-1)}$ in Sato's notation is $\left(\alpha_{0}+2\right)$; it can be shown that this same condition can also be derived from (5).

Biedenharn and Koozekanani (1974) calculated the zeros of the $6-j$ coefficient using a computer program, based on the powers of primes. Their tables for the non-trivial zeros of $\left\{\begin{array}{cc}a & b \\ d & c\end{array}\right\}$ have been given for all arguments ($a, b, c, d ; e, f$) being $\leqslant 18.5$, and the arguments are ordered in a 'speedometric fashion'. On the other hand, we generated the polynomial zeros of degree one, using the simple arithmetic condition stated above, without actually calculating the $6-j$ coefficient itself. Our calculation, for all arguments $\leqslant 10$, revealed 188 zeros and these account for a large number (188 out of 216) of those listed in the tables (Koozekanani and Biedenharn 1974) as 'non-trivial' zeros.

In conclusion, we state that the polynomial zeros of degree one are in fact trivial zeros revealed by the structure of the $3-j$ and $6-j$ coefficients, when they are cast into their corresponding symbolic binomial forms. We suggest that simple multiplicative factors ($1-\delta_{x, y}$) are introduced into the definitions of these coefficients to explicitly exhibit these trivial structure zeros, which were hitherto considered as 'non-trivial' zeros along with other polynomial zeros of higher degrees.

The authors acknowledge with thanks the discussions they had with Professor R Vasudevan and Dr R Sridhar.

References

Biedenharn L C and Louck J D 1981 Encycl. of Maths. and its Applns., vol 8, 9 (New York: Addison Wesley)
Bowick M J 1976 Regge Symmetries and Null 3-j and 6-j symbols, Thesis, University of Canterbury, Christchurch, New Zealand
Koozekanani S H and Biedenharn L C 1974 Rev. Mex. Fis. 23 327-40
Racah G 1942 Phys. Rev. 62438
Regge T 1958 Nuovo Cimento 10544

- 1959 Nuovo Cimento 11116

Sato M 1955 Prog. Theor. Phys. 13405
Sato M and Kaguei S 1972 Phys. Lett. 42B 21-3
Smorodinskii Ya A and Shelepin L A 1972 Sov. Phys.-Usp. 151
Srinivasa Rao K 1978 J. Phys. A: Math. Gen. 11 L69
Srinivasa Rao K and Venkatesh K 1977 V Int. Coll. on Group Theor. Methods in Phys. (New York: Academic) p 649
Varshalovich D A, Moskalev A N and Khersonskii V K 1975 Quantum Theory of Angular Momentum (Leningrad: Nauka) (in Russian)

